Impactos en la Luna y algunos experimentos en la Tierra

(Marcelo Mojica Gundlach)

 

Estando viendo las fotografías obtenidas de la pasada lunación, me sorprendió el hecho de que algunos rayos lunares sean anchos, mientras que otros sean delgados, algunos abundantes en alguna dirección, mientras que en otras no.  Es muy interesante que tengamos tanto material de estudio en nuestro satélite y que los aficionados le demos tan poca importancia al astro que está más cerca de nosotros y que además es un objeto de estudio en el cual podemos forzar los aumentos de nuestros telescopios al máximo.  Sólo falta ser un poco observador para darnos cuenta que existen muchísimos detalles cada vez que observamos la Luna.  En realidad, hay tantos detalles que nos podríamos pasar horas enteras observando un mar, o alguna región pequeña de cráteres cambiando de oculares, añadiendo filtros de colores, etc.

Es preciso que los observadores aficionados puedan empezar un programa sistemático para ayudar en los proyectos internacionales o, a otros aficionados que estudian este campo.  Como observamos en los reportes de la ALPO, sección lunar, hay observadores que realizan su trabajo metódico con un simple refractor de 60mm de apertura a F/16 y es sabido que muchos de los observadores latinos tenemos al alcance equipos mucho más poderosos y sofisticados que dicho telescopio. Lo que sí nos falta son ganas de realizar observaciones en forma disciplinada y constante.

descarga

En el mes de agosto del 2016, entre el 16 y 17, la Luna se presentó muy favorable, como también las condiciones del cielo.  La atención se centró en el cráter Kepler, mostrado en la figura de la izquierda, el cual presenta rayos bastante anchos hacia el oeste lunar (hacia abajo en la foto), en tanto que hacia el norte y hacia el sur, no tiene rayos importantes.   También es de notar la diferencia de coloración entre los rayos y el terreno circundante al cráter Kepler.  Obviamente que tenemos las interferencias de los rayos de Copérnico, pero, de todas maneras, los rayos de Kepler son muy notorios, como también la distribución del material eyectado por la colisión.

descarga-1

Con Sergio Fabiani, quisimos recrear estas colisiones utilizando su rifle de aire comprimido y perdigones de cobre, disparando sobre una cama de harina la cual tenía otra cama encima de ella de maicena.  Los resultados fueron interesantes porque cuando disparamos con un ángulo de 60º, respecto a la horizontal, se pudo observar que generamos un cráter con rayos anchos en dirección del proyectil, tal como se muestra en la figura a la derecha y casi ningún rayo hacia los costados.  Obviamente que éste es un experimento muy simple, pero nos da pautas de que podemos realizar algunas demostraciones cuando realicemos cursillos de astronomía, para que nuestros estudiantes puedan sentir lo que es hacer ciencia.  Tal como lo hizo notar uno de nuestros miembros observadores de variables, Moisés Montero, se debe tomar en cuenta que en la Luna no existe atmósfera y que aquí en la Tierra, las partículas podrían comportarse de forma diferentes debido a la resistencia del aire, sin embargo, a tan pequeña escala, los resultados demostrativos pueden ser valuados en positivos, mostrando una tendencia del material dispersado hacia algunas direcciones preferenciales.  Esperamos que en las siguientes lunaciones podamos adquirir mejores imágenes para poder ir ampliando nuestro conocimiento en este campo que empezamos a descubrir y gozar cada lunación.

La química indica que la Luna es el manto de la prototierra relocalizado

13/9/2016 de Washington University in St. Louis / Nature

Choque planetario: una ilustración artística del impacto gigante que creó la Luna de la Tierra. Una nueva investigación sugiere que el impacto fue incluso más violento de lo que sugiere esta imagen. Ilustración: Dana Berry/SwRI

Choque planetario: una ilustración artística del impacto gigante que creó la Luna de la Tierra. Una nueva investigación sugiere que el impacto fue incluso más violento de lo que sugiere esta imagen. Ilustración: Dana Berry/SwRI.

Las diminutas diferencias en la separación de distintos isótopos de potasio entre la Luna y la Tierra han permanecido escondidas bajo los límites de detección de las técnicas analíticas hasta hace poco. Pero en 2015, el geoquímico Kun Wang de la Universidad de Washington, y Stein Jacobsen, de la Universidad de Harvard, desarrollaron una técnica para analizar estos isótopos que puede alcanzar una precisión 10 veces mejor que el mejor método anterior.

Wang y Jacobsen informan ahora acerca de diferencias isotópicas entre rocas lunares y terrestres que proporcionan la primera prueba experimental que puede distinguir entre dos modelos dominantes del origen de la Luna. En un modelo, un impacto de baja energía deja a la prototierra y la Luna rodeadas de una atmósfera de silicatos; en el otro, un impacto mucho más violento vaporiza el proyectil y la mayor parte de la prototierra, expandiéndose para formar un enorme disco superfluido en el que la Luna acabará cristalizando.

El estudio isotópico, que apoya el modelo de alta energía apoya la tesis de que el impacto realmente vaporizó casi toda la Tierra.

Wang y Jacobsen examinaron varias muestras de rocas lunares y compararon las proporciones entre los isótopos de potasio con ocho rocas terrestres representativas del manto de la Tierra. Descubrieron que las rocas lunares estaban enriquecidas en 0.4 partes por mil en el isótopo más pesado del potasio, el potasio-41. El único proceso que podría separar los isótopos del potasio de este modo es una condensación incompleta de potasio en forma de vapor durante la formación de la luna. Esto contradice el modelo de la atmósfera de silicatos, que predice que las rocas lunares contendrán menos cantidad del isótopo pesado que las terrestres, lo contrario de lo que han encontrado ls científicos.

[Noticia completa]

Actualizado ( Martes, 13 de Septiembre de 2016 09:45 )   http://observatori.uv.es/index.php?option=com_content&view=article&id=7780%3Ala-quimica-indica-que-la-luna-es-el-manto-de-la-prototierra-relocalizado&catid=52%3Anoticosmos&Itemid=74&lang=es

Los observadores lunares de la LIADA en “The Lunar Observer” de septiembre 2016

Ha aparecido la edición de septiembre de “The Lunar Observer”, la revista de observación lunar de la ALPO (Association of Lunar and Planetary Observers). Dicha revista se puede descargar de la web de ALPO: http://alpo-astronomy.org/ y también del siguiente link https://drive.google.com/file/d/0B-Dhf119f9EwaTg3NkpIc1JTTjQ/view?usp=sharing. Por 14º mes consecutivo, las observaciones de nuestra asociación aparecen en la revista que muestra la elite de la observación lunar mundial.

En la sección “Focus On”, un monográfico sobre un accidente lunar específico que aparece cada 2 meses, fue incluida una imagen de Palus Putredinis con luna llena de Francisco Alsina Cardinalli (pág.10):

palus-putredinis-06-19-2016-05-15

Y de Marcelo Mojica (pág.11).

En la sección “Recent topographical observations” se mencionan las siguientes observaciones (pág.15):

FRANCISCO ALSINA CARDINALI – ORO VERDE, ARGENTINA. Digital image of Plato.

MAURICE COLLINS – PALMERSTON NORTH, NEW ZEALAND. Digital images of Alphonsus, Alpine Valley, Clavius, Copernicus, Deslandres, Eratosthenes(2), Fra Mauro(2), Heraclitus, Langrenus, Mare Frigoris, Meton, Palus Putredinis, Plato, Proclus, Ptolemaus, Tycho.

DESIREÉ GODOY – ORO VERDE, ARGENTINA. Digital image of Gassendi.

GUILHERME GRASSMAN – AMERICANA, SP, BRAZIL. Digital images of Montes Apenninus-Palus Putredinis(2).

ROBERT HAYS – WORTH, ILLINOIS, USA. Drawings of Jansen R & Lassell C.

RICHARD HILL – TUCSON, ARIZONA, USA. Digital images of Archimedes, Aristillus, Catena Abulfeda, Gambart Domes, Montes Caucasus, Palus Putredinis(3) & South Polar Regions.

MICHAEL SWEETMAN – TUCSON, ARIZONA USA. Digital images of Montes Apenninus(2) & Petavius.

FRANCO TACCOGNA – GRAVINA IN PUGLIA (BA), ITALY. Digital images of Aristarchus(6) & Sinus Iridum(12).

DAVID TESKE – STARKVILLE, MISSISSIPPI, USA. Digital images of Montes Apenninus(2).

STEVE TZIKAS – RESTON, VIRGINIA, USA. Radio image of moon.

KEN WARREN – NICHOLSON, GEORGIA, USA. Digital image of Montes Spitzbergen-Kirch.

Y se escogieron las siguientes imágenes de Francisco Alsina Cardinalli y Desireè Godoy para ilustrar la sección (págs.16/17):

Plato:

plato-01-02-47-ir

Gassendi:

gassensi-00-53-18

En la Sección “Lunar Geological Change Detection Program” (págs. 20 y siguientes) aparecen nuestras colaboraciones con este programa dirigido por al astrofísico inglés Anthony Cook cuyo objetivo es analizar reportes históricos de Fenómenos Lunares Transitorios y revisar la gradación otorgada a los mismos:

Observations/Studies for July were received from: Jay Albert (Lake Worth, FL, USA – ALPO) observed: Aristarchus, Mare Crisium, Proclus and Taruntius. Alberto Anunziato (Argentina – AEA) observed Alphonsus, Birt, Censorinus, Curtis, Herodotus, Hyginus N, Mons Piton, Plato, Proclus, and several other features. Anthony Cook (Newtown, UK – BAA) imaged several features. Marie Cook (Mundesley, UK – BAA) observed Aristarchus and Manilius. Valerio Fontani (Italy, UAI) imaged Montes Tenerife. Marcelo Grundlach (Bolivia – IACCB) imaged Aristarchus. Rik Hill (Tucson, AZ, USA – ALPO) imaged: Catena Abulfeda, Gambart, Moretus, and Petavius. Thierry Speth (France – BAA) imaged Aristarchus, Bailly, Daniell, and Darwin. Gary Varney (Pembroke Pines, FL, USA – ALPO) imaged Lambert and several other features. Ken Warren (Nicholson, GA, USA) imaged the eastern Mare Imbrium.

Con más detalle, en la página 25 aparece el análisis de nuestra observación de Mons Piton para revisar la gradación de un evento de 1969. Y en las páginas 26/27 una imagen de Marcelo Mojica es utilizada para un concienzuda análisis de 4 eventos pasados de supuestos FLT:

a-img_1796-proc-44